

restcli user manual

	Overview
	Collections

	Requests

	Environments

	Usage
	Command: run

	Command: exec

	Command: view

	Command: env

	Command: repl

	Making Requests
	Environment overrides

	Request modifiers

	Tutorial: Modeling an API
	Debriefing

	Appendix

restcli is a terminal web API client written in Python. It draws
inspiration from Postman [https://www.getpostman.com/postman] and HTTPie [https://httpie.org/], and offers some of the best features
of both.

Features

	save requests as YAML files

	scripting

	parameterized requests using Jinja2 [http://jinja.pocoo.org/] templating

	expressive commandline syntax, inspired by HTTPie [https://httpie.org/]

	first-class JSON support

	interactive prompt with autocomplete

	colored output

CLI Usage

Command-line usage is documented in the
Usage manual [https://restcli.readthedocs.io/en/latest/usage.html].

Documentation

	Overview [https://restcli.readthedocs.io/en/latest/overview.html]

	Usage [https://restcli.readthedocs.io/en/latest/usage.html]

	Making Requests [https://restcli.readthedocs.io/en/latest/requests.html]

	Tutorial [https://restcli.readthedocs.io/en/latest/tutorial.html]

Installation

With pip:

$ pip install -r requirements.txt
$ pip install .

With setup.py:

$ python setup.py install

With setup.py but allow edits to the files under restcli/ and reflect
those changes without having to reinstall restcli:

$ python setup.py develop

If you have invoke, you can use it for running the tests and installation.
If not, you can install it with pip install invoke.

$ invoke test # Run the tests
$ invoke install # Install it
$ invoke build # Run the whole build workflow

Docker

Assuming Docker is installed, restcli can run inside a container. To build
the Docker container, run the following from the project root:

$ docker build -t restcli .

Then you can run commands from within the container:

$ docker run -it restcli -c foobar.yaml run foo bar
$ docker run -it restcli --save -c api.yaml -e env.yaml env foo:bar

Roadmap

Short-term

Here’s what we have in store for the foreseeable future.

	autocomplete Group and Request names in the command prompt

	support for other formats (plaintext, forms, file uploads)

	convert to/from Postman collections

Long-term

Here are some longer-term feature concepts that may or may not get implemented.

	full screen terminal UI via python_prompt_toolkit [https://github.com/jonathanslenders/python-prompt-toolkit]

	in-app request editor (perhaps using pyvim [https://github.com/jonathanslenders/pyvim])

License

This software is distributed under the Apache License, Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0].

Overview

In this section we’ll get a bird’s eye view of restcli's core concepts.
After reading this section, you should be ready for the
Tutorial.

Collections

restcli understands your API through YAML files called Collections.
Collections are objects composed of Groups, which are again objects composed
of Requests. A Collection is essentially just a bunch of
Requests; Groups are purely organizational.

weapons:
 equip:
 # <<request>>
 info:
 # <<request>>
potions:
 drink:
 # <<request>>

This Collection has two Groups. The first Group, weapons, has two Requests,
equip and info. The second has Group is called “potions” and has one
Request called “drink”. This is a good example of a well-organized Collection —
Groups were used to provide context, and even though we’re using placeholders,
it’s easy to infer the purpose of each Request.

Requests

A Request is a YAML object that describes a particular action against an API.
Requests are the bread and butter of restcli.

method: post
url: "http://httpbin.org/post"
headers:
 Content-Type: application/json
 Authorization: {{ password }}
body: |
 name: bar
 age: {{ cool_number }}
 is_cool: true

At a glance, we can get a rough idea of what’s going on. This Request
uses the POST method to send some data (body) to the url
http://httpbin.org/post, with the given Content-Type and Authorization
headers.

Take note of the stuff in between the double curly brackets: {{ password }},
{{ cool_number }}. These are template variables, which must be interpolated
with concrete values before executing the request, which brings us to our next
topic…

Environments

An Environment is a YAML object that defines values which are used to
interpolate template variables in a Collection. Environments can be be modified
with scripts, which we cover in the Tutorial.

This Environment could be used with the Request we looked at in the
previous section:

password: sup3rs3cr3t
cool_number: 25

Once the Environment is applied, the Request would look something like this:

method: post
url: "http://httpbin.org/post"
headers:
 Content-Type: application/json
 Authorization: sup3rs3cr3t
body: |
 name: bar
 age: 25
 is_cool: true

Next Steps

The recommended way to continue learning is the Tutorial.

Usage

restcli is invoked from the command-line. To display usage info, supply the
--help flag:

$ restcli --help

Usage: restcli [OPTIONS] COMMAND [ARGS]...

Options:
 -v, --version Show the version and exit.
 -c, --collection PATH Collection file.
 -e, --env PATH Environment file.
 -s, --save / -S, --no-save Save Environment to disk after changes.
 -q, --quiet / -Q, --loud Suppress HTTP output.
 --help Show this message and exit.

Commands:
 env View or set Environment variables.
 exec Run multiple Requests from a file.
 repl Start an interactive prompt.
 run Run a Request.
 view View a Group, Request, or Request Parameter.

The available commands are:

	Command: run
	Run a Request.

	Command: exec
	Run multiple Requests from a file.

	Command: view
	Inspect the contents of a Group, Request, or Request attribute.

	Command: env
	View or set Environment variables.

	Command: repl
	Start the interactive prompt.

To display usage info for the different commands, supply the --help flag to
that particular command.

Command: run

The run command is documented on its own page, in Making Requests.

Command: exec

$ restcli exec --help

Usage: restcli exec [OPTIONS] FILE

 Run multiple Requests from a file.

 If '-' is given, stdin will be used. Lines beginning with '#' are ignored.
 Each line in the file should specify args for a single "run" invocation:

 [OPTIONS] GROUP REQUEST [MODIFIERS]...

Options:
 --help Show this message and exit.

The exec command loops through the given file, calling run with the
arguments provided on each line. For example, for the following file:

requests.txt
accounts create -o password:abc123
accounts update password==abc123 -o name:foobar

These two invocations are equivalent:

$ restcli exec requests.txt

$ restcli run accounts create -o password:abc123
$ restcli run update password==abc123 -o name:foobar

Command: view

$ restcli view --help

Usage: restcli view [OPTIONS] GROUP [REQUEST] [PARAM]

 View a Group, Request, or Request Parameter.

Options:
 -r, --render / -R, --no-render Render with Environment variables.
 --help Show this message and exit.

The view command selects part of a Collection and outputs it as JSON.
It has three forms, described here with examples:

	Group view
	Select an entire Group, e.g.:

$ restcli view chordata

{
 "mammalia": {
 "headers": {
 ...
 },
 "body": ...,
 ...
 },
 "amphibia": {
 ...
 },
 ...
}

	Request view
	Select a particular Request within a Group, e.g.:

$ restcli view chordata mammalia

{
 "url": "{{ server }}/chordata/mammalia"
 "method": "get",
 "headers": {
 "Content-Type": "application/json",
 "Accept": "application/json",
 }
}

	Request Attribute view
	Select a single Attribute of a Request, e.g.:

$ restcli view chordata mammalia url

"{{ server }}/chordata/mammalia"

The output of view is just plain JSON, which makes it convenient for
scripts that need to programmatically analyze Collections in some way.

Use the --render flag to render template variables, e.g.:

$ restcli view --render chordata mammalia url

"https://animals.io/chordata/mammalia"

Command: env

Todo

Write this section

Command: repl

Usage: [OPTIONS] COMMAND [ARGS]...

Options:
 -v, --version Show the version and exit.
 -c, --collection PATH Collection file.
 -e, --env PATH Environment file.
 -s, --save / -S, --no-save Save Environment to disk after changes.
 -q, --quiet / -Q, --loud Suppress HTTP output.
 --help Show this message and exit.

Commands:
 change_collection Change to and load a new Collection file.
 change_env Change to and load a new Environment file.
 env View or set Environment variables.
 exec Run multiple Requests from a file.
 reload Reload Collection and Environment from disk.
 run Run a Request.
 save Save the current Environment to disk.
 view View a Group, Request, or Request Parameter.

The repl command starts an interactive prompt which allows you to issue
commands in a read-eval-print loop. It supports the same set of commands as the
regular commandline interface and adds a few repl-specific commands as well.

Making Requests

$ restcli run --help

Usage: restcli run [OPTIONS] GROUP REQUEST [MODIFIERS]...

 Run a Request.

Options:
 -o, --override-env TEXT Override Environment variables.
 --help Show this message and exit.

The run command runs Requests from a Collection, optionally within an
Environment. It roughly executes the following steps:

	Find the given Request in the given Collection.

	If defaults are given in a Config Document, use it to fill in missing
parameters in the Request.

	If an Environment is given, apply any overrides to it.

	Render the Request with Jinja2, using the Environment if given.

	Apply any modifiers to the Request.

	Execute the Request.

	If the Request has a script, execute it.

	If save is true, write any Environment changes to disk.

Examples:

$ restcli -s -c food.yaml -e env.yaml run recipes add -o !foo

$ restcli -c api.yaml run users list-all Authorization:abc123

Environment overrides

When running a Request, the Environment can be overrided on-the-fly with the
-o option. It supports two types of arguments:

	KEY:VALUE
	Set the key KEY to the value VALUE.

	!KEY
	Delete the key KEY.

The -o option must be specified once for each argument. For example, the
following run invocation will temporarily set the key name to the value
donut and delete the key foo:

$ restcli -c food.yaml -e env.yaml run recipes add \
 -o name:donut \
 -o !foo

Request modifiers

In addition to Environment overrides, the Request itself can be modified
on-the-fly using a special modifier syntax. In cases where an Environment
override changes the same Request parameter, modifiers always take precedence.
They must appear later than other options.

Each modifier has a mode and a parameter. The operation describes the thing to be modified,
and the mode describes the way in which it’s modified.

Generally, each modifier is written as a commandline flag, specifying the
mode, followed by an argument, specifying the operation. In the following
example modifier, its mode specified as -n (assign) and its
operation specified as foo:bar:

-n foo:bar

Modifiers may omit the mode flag as well, in which case mode will default
to assign. Thus, the following modifiers are equivalent:

-a foo:bar -n baz=quux
-a foo:bar baz=quux

Syntax

The general syntax of modifiers is described here:

modifiers ::= (mod_append | mod_assign | mod_delete)*
mod_assign ::= "-n" operation | operation
mod_append ::= "-a" operation
mod_delete ::= "-d" operation
operation ::= "'" op "'" | '"' op '"'
operation ::= op_header | op_query | op_body_str | op_body_nostr
op_header ::= <ASCII text> ":" [<ASCII text>]
op_query ::= <Unicode text> "==" [<Unicode text>]
op_body_str ::= <Unicode text> "=" [<Unicode text>]
op_body_nostr ::= <Unicode text> ":=" [<Unicode text>]

Modifier modes

There are three modifier modes:

	assign
	Assign the specified value to the specified Request parameter, replacing it
if it already exists. This is the default. If no mode is specified for a
given modifier, its mode will default to assign.

If a header X-Foo were set to bar, the following would change it
to quux:

$ restcli run actions get -n X-Foo:quux

Since assign is the default mode, you can omit the -n:

$ restcli run actions get X-Foo:quux

	append
	Append the specified value to the specified Request parameter. This
behavior differs depending the type of the Request parameter.

	If its a string, concenate the incoming value to it as a string.
	If a string field nickname were set to "foobar", the
following would change it to "foobar:quux".

	1

	$ restcli run actions post -a nickname=':quux'

	If its a number, add the incoming value to it as a number.
	If a json field age were set to 27, the following would
change it to 33.

	1

	$ restcli run actions post -a age:=6

	If its an array, concatenate the incoming value to it as an array.
	If a json field colors were set to ["red", "yellow"], the
following would change it to ["red", "yellow", "blue"].

	1

	$ restcli run actions post -a colors:='["blue"]'

Other types are not currently supported.

Todo

Add validation for other types.

	delete
	Delete the specified Request parameter. This ignores the value completely.

If a url parameter pageNumber were set to anything, the following would
remove it from the url query completely.

	1

	$ restcli run actions get -d pageNumber==

Todo

Rename append mode to add and maybe assign to set or
replace.

Table of modifier modes

	Mode

	Flag

	Usage

	assign

	-n

	-n OPERATION

	append

	-a

	-a OPERATION

	delete

	-d

	-d OPERATION

Modifier operations

Operations

	header
	Operators on a header key-value pair. The key and value must be valid
ASCII. Delimited by :.

	url param
	A URL query parameter. Delimited by ==.

	string field
	A JSON object key-value pair. The value will be interpreted as a string.
Delimited by =.

	json field
	A JSON object key-value pair. The value will be interpreted as a string.
Delimited by :=.

Table of modifier operations

	Operation

	Delimiter

	Usage

	Examples

	header

	:

	
	KEY : VALUE

	KEY :

	
	Authorization:abc

	Authorization:

	url param

	==

	
	KEY == VALUE

	KEY ==

	
	locale==en_US

	locale==

	string field

	=

	
	KEY = VALUE

	KEY =

	
	username=foobar

	username=

	json field

	:=

	
	KEY := VALUE

	KEY :=

	
	age:=15

	age:=

Examples

To follow along with the examples, grab the simple example project [https://github.com/dustinrohde/restcli/tree/master/examples/simple] from the
restcli source. Then from the example directory, export some environment
variables to use the example project’s Collection and Environment files:

$ export RESTCLI_COLLECTION="simple.collection.yaml"
$ export RESTCLI_ENV="simple.env.yaml"

To check your work after each restcli run invocation, just inspect the
response. All the Requests in this Collection will respond with a JSON blob
containing the information about your HTTP request, like this:

$ restcli run actions get

// HTTP response

{
 "args": {
 "fooParam": "10"
 },
 "headers": {
 "Accept": "application/json",
 "Accept-Encoding": "gzip, deflate",
 "Connection": "close",
 "Host": "httpbin.org",
 "User-Agent": "HTTPie/0.9.9",
 "X-Foo": "foo+bar+baz"
 },
 "origin": "75.76.62.109",
 "url": "https://httpbin.org/get?fooParam=10"
}

Example 1

Delete the header "Accept".

$ run actions get -d Accept:

Example 2

Append the string "420" to the body value "nickname".

$ run actions post -a time=420

Example 3

Assign the array '["red", "yellow", "blue"]' to the body value
"colors".

$ run actions post -n colors:='["red", "yellow", "blue"]'

Tutorial: Modeling an API

Note

This tutorial assumes that you’ve read the Overview and
Usage documentation.

Throughout this tutorial we will be modeling an API with restcli,
gradually adding to it as we learn new concepts, until we have a complete
API client suite. While the final result will be pasted at the end, I
encourage you to follow along and do it yourself as we go. This will give
you many opportunities to experiment and learn things you may not have
learned otherwise!

Debriefing

You have been commissioned to build an API for the notorious secret society,
the Sons of Secrecy. You were told the following information, in hushed
whispers:

	New members can join by invite only.

	Each member has a rank within the Society.

	Your rank determines how many secrets you are told.

	Only the highest ranking members, called Whisperers, have the ability to
recruit and promote members through the ranks.

Your task is to create a membership service for the Whisperers to keep track of
and manage their underlings. Using the service, Whisperers must be able to:

	Invite new members.

	Promote or demote members’ ranks.

	Send “secrets” to members.

In addition, the service must be guarded by a secret key, and no requests
should go through if they do not contain the key.

Let’s get started!

Requests

We’ll start by modeling the new member invitation service:

secrecy.yaml

memberships:
 invite:
 method: post
 url: "{{ server }}/memberships/invite"
 headers:
 Content-Type: application/json
 X-Secret-Key: '{{ secret_key }}'
 body: |
 name: {{ member_name }}
 age: {{ member_age }}
 can_keep_secrets: true

We made a new Collection and saved it as secrecy.yaml. So far it has one
Group called memberships with one Request called invite.

As requested, we’ve also added an X-Secret-Key header which holds the
secret key. It’s parameterized so that each Whisperer can have their own
personal key. This will be explained later in the templating section.

Request Parameters

Let’s zoom in a bit on Requests. While we’re at it, we’ll inspect our
invite Request more closely as well.

	method (string, required)
	HTTP method to use. Case insensitive.

We chose POST as our method for invite since POST is generally used for
creating resources. Also, per RFC 7231 [https://tools.ietf.org/html/rfc7231], the POST method should be used
when the request is non-idempotent [https://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning].

	url (string, required, templating)
	Fully qualified URL that will receive the request. Supports templating.

We chose to parameterize the scheme://host portion of the URL as
{{ server }}. As we’ll see later, this makes it easy to change the
host without a lot of labor, and makes it clear that the path portion of
the URL, /memberships/invite, is the real subject of this Request.

We’ll learn more about template variables later, but for now we know that
invitations happen at /send_invite.

	headers (object, ~templating)
	HTTP headers to add. Keys and values must all be strings. Values support
templating, but keys don’t.

We’re using the standard Content-Type header as well as a custom,
parameterized header called X-Secret-Key. We’ll inspect this further
in the templating section.

	body (string, templating)
	The request body. It must be encoded as a string, to facilitate the full
power of Jinja2 [http://jinja.pocoo.org/] templating. You’ll probably want to read the section
on YAML block style at some point.

The body string must contain valid YAML, which is converted to JSON before
sending the request. Only JSON encoding is supported at this time.

Our body parameter has 3 fields, name, age, and
can_keep_secrets. The first two are parameterized, but we just set the
third to true since keeping secrets is pretty much required if you’re
gonna join the Sons of Secrecy.

	script (string)
	A Python script to be executed after the request finishes and a response is
received. Scripts can be used to dynamically update the Environment based on the response payload. We’ll learn more
about this later in scripting.

Our invite Request doesn’t have a script.

Templating

restcli supports Jinja2 [http://jinja.pocoo.org/] templates in the url, headers, and
body Request Parameters. This is used to parameterize Requests with the
help of Environments. Any template variables in
these parameters, denoted by double curly brackets, will be replaced with
concrete values from the given Environment before the request is executed.

During the Debriefing, were told that the Whisperers can move members up the
ranks if they’re deemed worthy. Well it just so happens that Wanda, a fledgling
member, has proven herself as a devout secret-keeper.

We’ll start by adding another Request to our memberships Group:

secrecy.yaml

memberships:
 invite: ...

 bump_rank:
 method: patch
 url: '{{ server }}/memberships/{{ member_id }}'
 headers:
 Content-Type: application/json
 X-Secret-Key: '{{ secret_key }}'
 body: |
 title: '{{ titles[rank + 1] }}'
 rank: '{{ rank + 1 }}'

Whew, lots of variables! Let’s whip up an Environment file for Wanda. This
strategy has the advantage that we can seamlessly move between different members
without making any changes to the Collection.

wanda.env.yaml

server: 'https://www.secrecy.org'
secret_key: sup3rs3cr3t
titles:
 - Loudmouth
 - Seeker
 - Keeper
 - Confidant
 - Spectre
member_id: UGK882I59
rank: 0
#new_secrets:
- secret basement room full of kittens
- turtles all the way down

Todo

add new_secrets below, remove from above.

Note

The env.yaml extension in wanda.env.yaml is just a convention to
identify the file as an Environment. Any extension may be used.

We’re almost ready to run it, but let’s change server to something real
so we don’t get any errors:

server: http://httpbin.org/anything

Now we’ll run the request:

$ restcli -c secrecy.yaml -e wanda.env.yaml run memberships bump_rank

Here’s what restcli does when we hit enter:

	Load the Collection (secrecy.yaml) and locate the Request
memberships.bump_rank.

	Load the Environment (wanda.yaml).

	Use the Environment to execute the contents of the url, headers, and
body parameters as Jinja2 Template [http://jinja.pocoo.org/docs/2.9/api/#jinja2.Template]s,.

	Run the resulting HTTP request.

If we could view the finalized Request object before running it in #4, this is
what it would look like:

secrecy.yaml

method: post
url: 'https://www.secrecy.org/memberships/12345/bump_rank'
headers:
 Content-Type: application/json
 X-Secret-Key: sup3rs3cr3t
body: |
 rank: 1
 title: Seeker

Here’s a piece-by-piece breakdown of what happened:

	
	In the url section:
	
	{{ server }} was replaced with the value of Environment variable
server.

	{{ member_id }} was replaced with the value of Environment variable
member_id.

	In the headers section, {{ secret_key }} was replaced with the value
of Environment variable secret_key.

	
	In the body section:
	
	{{ rank }} was replaced with the value of Environment variable
rank, incremented by 1.

	{{ title }} was replaced by an item from the Environment variable
titles, an array, by indexing it with the incremented rank value.

Note

When it gets a request, http://httpbin.org/anything echoes back the
URL, headers, and request body in the response. You can use this to check
your work. If something is off, be sure to fix it before we continue.

Congrats on your new rank Wanda!

What we just learned should cover most use cases, but if you need more power
or just want to explore, there’s much more to templating than what we just
covered! restcli supports the entire Jinja2 template language, so check
out the official Template Designer Documentation [http://jinja.pocoo.org/docs/2.9/templates/] for the whole scoop.

Scripting

Templating is a powerful feature that allows you to make modular, reusable
Requests which encapsulate particular functions of your API without being tied
to specifics. We demonstrated this by modeling a function to increase a
member’s rank, and created an Environment file to use it on Wanda. If we wanted
to do the same for another member, we’d simply create a new Environment.

However, what happens when it’s time for Wanda’s second promotion? We know
her current rank is 1, but the Environment still says 0. If we ran the
bump_rank Request on the same Environment again, we’d get the same result:

secrecy.yaml

body: |
 rank: 1
 title: Seeker

We need a way to update the Environment automatically after we run the Request.

This is achieved through scripting. As mentioned earlier in Request
Parameters, each Request supports an optional script parameter which
contains Python code. It is evaluated after the request is ran, and can modify
the current Environment.

Let’s add a script to our bump_rank Request:

secrecy.yaml

bump_rank:
 ...
 script: |
 env['rank'] += 1

Now each time we run bump_rank it will update the Environment with the new
value. Let’s run it again to see the changes in action:

$ restcli --save -c secrecy.yaml -e wanda.env.yaml run memberships bump_rank

Notice that we added the --save flag. Without this, changes to the
Environment would not be saved to disk.

Open up your Environment file and make sure rank was updated successfully.

Note

All script examples were written for Python3.7, but most will probably work
in Python3+. To get version info, including the Python version, use the
--version flag:

$ restcli --version

Under the hood, scripts are executed with the Python builtin exec(), which
is called with a code object containing the script as well as a globals
dict containing the following variables:

	response
	A Response object [http://docs.python-requests.org/en/stable/api/#requests.Response] from the Python requests library [http://docs.python-requests.org/en/stable/], which contains
the status code, response headers, response body, and a lot more. Check
out the Response API for a detailed list.

	env
	A Python dict which contains the entire hierarchy of the current
Collection. It is mutable, and editing its contents may result in one or
both of the following effects:

	If running in interactive mode, any changes made will persist in the
active Environment until the session ends.

	If autosave is enabled, the changes will be saved to disk.

Any functions or variables imported in the lib section of the Config
document will be available in your scripts as well. We’ll tackle the
Config document in the next section.

Note

Since Python is whitespace sensitive, you’ll probably want to read the
section on YAML block style.

The Config Document

So far our Collections have been composed of a single YAML document.
restcli supports an optional second document per Collection as well, called
the Config Document.

Note

If you’re not sure what “document” means in YAML, here’s a quick primer:

Essentially, documents allow you to have more than one YAML “file”
(document) in the same file. Notice that --- that appears at the top
of each example we’ve looked at? That’s how you tell YAML where your
document begins.

Technically, the spec has more rules than that for documents but PyYAML,
the library restcli uses, isn’t that strict. Here’s the spec
anyway if you’re interested: http://yaml.org/spec/1.2/spec.html#id2800132

If present, the Config Document must appear before the Requests document.
Breaking it down, a Collection must either:

	contain exactly one document, the Requests document, or

	contain exactly two documents; the Config Document and the Requests document,
in that order.

Let’s add a Config Document to our Secretmasons Collection. We’ll take a look
and then jump into explanations after:

secrecy.yaml

defaults:
 headers:
 Content-Type: application/json
 X-Secret-Key: '{{ secret_key }}'
lib:
 - restcli.contrib.scripts

memberships:
 invite: ...

 upgrade: ...

Config Parameters

The Config Document is used for global configuration in general, so the
parameters defined here don’t have much in common.

	defaults (object)
	Default values to use for each Request parameter when not specified in the
Request. defaults has the same structure as a Request, so each
parameters defined here must also be valid as a Request parameter.

	lib (array)
	lib is an array of Python module paths. Each module here must contain a
function with the signature define(request, env, *args, **kwargs) which
returns a dict. That dict will be added to the execution environment of any
script that gets executed after a Request is completed.

restcli ships with a pre-baked lib module at
restcli.contrib.scripts. It provides some useful utility functions
to use in your scripts. It can also be used as a learning tool.

Appendix

A. YAML Block Style

Writing multiline strings for the body and script Request parameters
without losing readability is easy with YAML’s block style [http://www.yaml.org/spec/1.2/spec.html#id2793604]. I recommend
using literal style [http://www.yaml.org/spec/1.2/spec.html#id2793604] since it preserves whitespace and is the most readable.
Adding to the example above:

body: |
 name: bar
 age: {{ foo_age }}
 attributes:
 fire_spinning: 32
 basket_weaving: 11

The vertical bar (|) denotes the start of a literal block, so newlines are
preserved, as well as any additional indentation. In this example, the
result is that the value of body is 5 lines of text, with the last two
lines indented 4 spaces.

Note that it is impossible to escape characters within a literal block, so if
that’s something you need you may have to try a different

Index

 nav.xhtml

 Table of Contents

 		
 restcli user manual

 		
 Overview

 		
 Collections

 		
 Requests

 		
 Environments

 		
 Next Steps

 		
 Usage

 		
 Command: run

 		
 Command: exec

 		
 Command: view

 		
 Command: env

 		
 Command: repl

 		
 Making Requests

 		
 Environment overrides

 		
 Request modifiers

 		
 Syntax

 		
 Modifier modes

 		
 Modifier operations

 		
 Examples

 		
 Tutorial: Modeling an API

 		
 Debriefing

 		
 Requests

 		
 Templating

 		
 Scripting

 		
 The Config Document

 		
 Appendix

 		
 A. YAML Block Style

_static/plus.png

_static/file.png

_static/minus.png

